Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy

نویسندگان

  • Shih-Hsin Ho
  • Akihito Nakanishi
  • Xiaoting Ye
  • Jo-Shu Chang
  • Kiyotaka Hara
  • Tomohisa Hasunuma
  • Akihiko Kondo
چکیده

BACKGROUND Biodiesel production from marine microalgae has received much attention as microalgae can be cultivated on non-arable land without the use of potable water, and with the additional benefits of mitigating CO2 emissions and yielding biomass. However, there is still a lack of effective operational strategies to promote lipid accumulation in marine microalgae, which are suitable for making biodiesel since they are mainly composed of saturated and monounsaturated fatty acids. Moreover, the regulatory mechanisms involved in lipid biosynthesis in microalgae under environmental stress are not well understood. RESULTS In this work, the combined effects of salinity and nitrogen depletion stresses on lipid accumulation of a newly isolated marine microalga, Chlamydomonas sp. JSC4, were explored. Metabolic intermediates were profiled over time to observe transient changes during the lipid accumulation triggered by the combination of the two stresses. An innovative cultivation strategy (denoted salinity-gradient operation) was also employed to markedly improve the lipid accumulation and lipid quality of the microalga, which attained an optimal lipid productivity of 223.2 mg L(-1) d(-1) and a lipid content of 59.4% per dry cell weight. This performance is significantly higher than reported in most related studies. CONCLUSIONS This work demonstrated the synergistic integration of biological and engineering technologies to develop a simple and effective strategy for the enhancement of oil production in marine microalgae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity

BACKGROUND Marine microalgae are among the most promising lipid sources for biodiesel production because they can be grown on nonarable land without the use of potable water. Marine microalgae also harvest solar energy efficiently with a high growth rate, converting CO2 into lipids stored in the cells. Both light intensity and nitrogen availability strongly affect the growth, lipid accumulation...

متن کامل

Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4

Biodiesel production using microalgae would play a pivotal role in satisfying future global energy demands. Understanding of lipid metabolism in microalgae is important to isolate oleaginous strain capable of overproducing lipids. It has been reported that reducing starch biosynthesis can enhance lipid accumulation. However, the metabolic mechanism controlling carbon partitioning from starch to...

متن کامل

Biodiesel production from marine cyanobacteria cultured in plate and tubular photobioreactors.

Carbon (neutral) based renewable liquid biofuels are alternative to petroleum derived transport fuels that contribute to global warming and are of a limited availability. Microalgae based biofuels are considered as promising source of energy. Lyngbya sp. and Synechococcus sp. were studied for the possibility of biodiesel production in different media such as ASNIII, sea water enrichment medium ...

متن کامل

Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based ...

متن کامل

Study of optimal conditions in order to the use of the cyanobacteria Synechococcus sp. ISC106 as a candidate for biodiesel production

Global warming due to fossil fuel, price increases, environmental pollution resulting from their use and production green house gases caused scientists trying to produce proper fuel, renewable of replacing fossil fuels. The purpose of this study was to determine the conditions of survival, growth, pigments and fatty acid profiles to biodiesel production from cyanobacteria Synechococcus ISC 106 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014